A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws

نویسندگان

  • Chieh-Sen Huang
  • Todd Arbogast
  • Chen-Hui Hung
چکیده

A WENO re-averaging (or re-mapping) technique is developed that converts function averages on one grid to another grid to high order. Nonlinear weighting gives the essentially non-oscillatory property to the re-averaged function values. The new reconstruction grid is used to obtain a standard high order WENO reconstruction of the function averages at a select point. By choosing the reconstruction grid to include the point of interest, a high order function value can be reconstructed using only positive linear weights. The re-averaging technique is applied to define two variants of a classic CWENO3 scheme that combines two linear polynomials to obtain formal third order accuracy. Such a scheme cannot otherwise be defined, due to the nonexistence of linear weights for third order reconstruction at the center of a grid element. The new scheme uses a compact stencil of three solution averages, and only positive linear weights are used. The scheme extends easily to problems in higher space dimensions, essentially as a tensor product of the one-dimensional scheme. The scheme maintains formal third order accuracy in higher dimensions. Numerical results show that this CWENO3 scheme is third order accurate for smooth problems and gives good results for non-smooth problems, including those with shocks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

An efficient class of WENO schemes with adaptive order

Finite difference WENO schemes have established themselves as very worthy performers for entire classes of applications that involve hyperbolic conservation laws. In this paper we report on two major advances that make finite difference WENO schemes more efficient. The first advance consists of realizing that WENO schemes require us to carry out stencil operations very efficiently. In this pape...

متن کامل

Compact Central WENO Schemes for Multidimensional Conservation Laws

We present a new third-order central scheme for approximating solutions of systems of conservation laws in one and two space dimensions. In the spirit of Godunov-type schemes, our method is based on reconstructing a piecewisepolynomial interpolant from cell-averages which is then advanced exactly in time. In the reconstruction step, we introduce a new third-order, compact, CWENO reconstruction,...

متن کامل

Central WENO schemes for hyperbolic systems of conservation laws

We present a family of high-order, essentially non-oscillatory, central schemes for approximating solutions of hyperbolic systems of conservation laws. These schemes are based on a new centered version of the Weighed Essentially Non-Oscillatory (WENO) reconstruction of point-values from cell-averages, which is then followed by an accurate approximation of the fluxes via a natural continuous ext...

متن کامل

A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws

In this paper, a speed-up strategy for finite volume WENO schemes is developed for solving hyperbolic conservation laws. It adopts p-adaptive like reconstruction, which automatically adjusts from fifth order WENO reconstruction to first order constant reconstruction when nearly constant solutions are detected by the undivided differences. The corresponding order of accuracy for the solutions is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 262  شماره 

صفحات  -

تاریخ انتشار 2014